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	  1.	  grayscale	  -‐>	  sizing	  funcBon	  for	  	  

edge-‐detect	  

2.	  SBppling	  via	  
Maximal	  	  
Poisson-‐Disk	  
Sampling	  

3.	  	  
SiK	  points	  
	  
Replace	  2	  for	  1.	  
	  
Respect	  original	  
sizing	  funcBon.	  
	  
Fewer	  points	  
Minimal	  quality	  loss	  

Application	


Universally	  lighter,	  
but	  features	  sBll	  
disBnct	  



Overview 
•  Input: point sample distribution 

Poisson disks, Delaunay Refinement 
–  Sizing function  

•  Adheres approximately 
• Observe: other distributions also respect sizing function,  

         might be smaller 
• Process 

– Replace points 2-for-1 
– Adhere to sizing function 

• Result 
–  Fewer points --- how many? 
– Retained randomness --- surprise! 



Mesh	  Improvement	  
SiKing	  triangulaBons	  from	  
	  	  	  	  DR	  Delaunay	  Refinement	  
	  	  	  	  	  	  ODR	  Delaunay	  Refinement	  w/	  Off-‐centers	  	  
	  	  	  	  MPS	  Maximal	  Poisson-‐disk	  Sampling	  

MPS ���
new disk	


global uniform random locations	

outside prior disks	


DR���
new disk	


center of large empty dual circle	




Problem 
Painting Yourself Into a Corner 

MPS, DR 
easy to introduce a small gap 
that later forces  

–  distance = r + eps 
–  dense sampling 

gap 
ßà 

disk later 	


lots of r ≈1 edges	


MPS	

DR	


1 

2 



DR Solution 
off-centers DR (ODR) 

DR 
gap 
ßà 

disk later 	


ODR 
no gap 

move disk  
towards short edge 

fewer r ≈1 edges	




Offcenters reduces density… 
by a lot for non-uniform sizing functions 

“Off-centers: A new type of Steiner points for computing 
size-optimal quality-guaranteed Delaunay triangulations”	


(a) input	
 (b) DR	
 (c) ODR	


But we will focus on 	

r = 1, uniform	




Our	  MPS-‐like	  Solu0on:	  Si3ing 
• Post-‐process	  
• For	  all	  pairs	  of	  points	  with	  overlapping	  disks	  

–  Try	  to	  replace	  2-‐for-‐1	  
–  (Replacing	  changes	  the	  set	  of	  overlapping	  pairs)	  

• Quit	  when	  no	  pair	  can	  be	  replaced	  

replaced	




Si3ing	  Algorithm	  
Gather	  Boundary	  Disks 

1.	  Gather	  disks	  overlapping	  P	  
–  (Q)	  

Sort	  by	  angle	  around	  P	  (Q)	  	  

P	   Q	   Q	  P	  

2.	  S0tch	  lists	  together	  
–  Replace	  Q	  in	  ListP	  by	  ListQ	   3.	  Remove	  duplicate	  disks	  



Si3ing	  Algorithm	  
Winnow	  Non-‐Bounding	  Disks 

•  Remove	  disks	  not	  bounding	  the	  white	  area	  
–  Test	  consecu0ve	  disks	  in	  list,	  see	  if	  le3	  point	  of	  intersec0on	  is	  inside	  next	  disk	  

bounding	  me?	  

–  In-‐circle	  test	  speeds	  up	  intersec0on	  point	  test	  by	  3x	  	  
	  technical	  for	  non-‐constant	  radius,	  details	  in	  paper	  J	  

	  



Si3ing	  Algorithm	  
Exclusion	  –	  Inclusion	  Disks 

–  A	  new	  disk	  will	  cover	  all	  the	  white	  area	  
•  Iff	  it	  covers	  all	  the	  corners	  of	  intersec0on	  

–  Reason:	  because	  disks	  are	  convex	  
–  Need	  replacement	  disk	  

•  Outside	  all	  sample	  disks	  
•  Inside	  all	  dual	  corner	  disks	  

	  
Is there a common intersection?	




Si3ing	  Algorithm	  
Search	  for	  Random	  Loca0on	  –	  Using	  “Simple	  MPS” 

Solu0on:	  	  
•  Simple	  MPS	  [Ebeida	  et	  al.	  Eurographics	  2012]	  	  
•  extended	  for	  purple	  inclusion	  disks	  

Flat	  quadtree	  
•  Keep	  /	  discard	  squares	  en0rely	  inside	  /	  outside	  disks	  
•  Sample	  from	  kept	  squares	  –	  done	  if	  success	  
•  Refine	  all	  squares	  and	  repeat	  

If	  last	  square	  is	  discarded	  (machine	  precision)	  
•  No	  replacement	  disk	  exists,	  try	  a	  different	  pair	  

	  

in	

out	


–  Problem:	  find	  random	  point	  that	  is	  
•  Outside	  all	  sample	  disks	  
•  Inside	  all	  dual	  corner	  disks	  

Simple	  MPS	  Algorithm	  Details	  	  
	  
IniBalize	  
	  	  	  	  bounding	  box	  of	  purple	  corners	  
	  	  	  	  subdivide	  into	  squares	  -‐	  diagonal	  about	  radius	  
	  
	  
	  
	  	  Sample	  C	  |	  #square	  Bmes	  |	  
	  	  	  	  	  	  pick	  a	  square	  
	  	  	  	  	  	  pick	  a	  point	  p	  in	  the	  square	  
	  	  	  	  	  	  keep	  p	  if	  out-‐blue	  &	  in-‐purple	  
	  	  	  	  	  	  	  	  success!	  
	  
	  
	  	  Refine	  all	  squares	  
	  	  	  	  	  	  center	  inside	  a	  blue	  circle	  -‐	  delta?	  Discard	  
	  	  	  	  	  	  center	  outside	  a	  purple	  circle	  +	  delta?	  Discard	  
	  
Repeat	  with	  refined	  squares	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  No	  squares?	  No	  replacement	  exists	  

in?	
 out?	


!in then discard n	


success	


!out then discard n	




SiK-‐>	  

Sifting Improves All  
Uniform Test Distributions 

• Si3ing	  improves,	  MPS,	  DR	  and	  further	  improves	  ODR	  

DR	
 sDR	


MPS	
 sMPS	




Sifting reduces 
 number of points by ≈25%  

density bracketed by 
non-random tilings 

M. Ebeida et al. / Sifted Disks

anyway. In that sense our resampling is a strict improvement.

Nonuniform sampling requires slightly different handling in

the Filtering and Resampling steps. (By non-uniform we

mean that the sampling density varies spatially, but the prob-

ability of selecting the next random point within a given sub-

region is still proportional to the subregion’s area.)

The key change for the nonuniform case is to use a

weighted power diagram and its dual Regular triangulation

[AE84]. The standard construction uses weights equal to

the disk radii (sizing function). There is a nice geometric

correspondence between power diagrams and our disks and

points [YW12]. As before, two points are neighbors if their

disks overlap. The line separating the Voronoi cells of neigh-

bors l1 and l2 is straight and perpendicular to l1l2 but shifted

if the disks d1 and d2 have unequal radii: it is the line pass-

ing through the intersection points of d1 and d2. As in the

Voronoi diagram, for three weighted points the three sepa-

rating lines meet at a common point, the power vertex cP.

Filtering. For the equidistant-point-in-d3 check we use the

power vertex instead of the Voronoi vertex. The correctness

of this follows directly from the redefinition of distance and

separators. Figure 6b shows an example where using the

power vertex cP gives the correct answer, but the unweighted

Voronoi vertex cV does not.

Resampling. In the uniform case, the disk of any sample in

a flat quadtree square cannot cover a corner if the square is

farther than r from the corner. Such squares are discarded.

For the nonuniform case, the radius is changing. Since we

cannot check the radius at every point in the square, we adopt

a conservative test based on the sizing function (radius) at

the square’s center, the size of the square, and the maximum

rate of change of the sizing function [MREB12a]. The test

is a sufficient condition for discarding the cell, and becomes

more accurate (closer to necessary) as the square is refined.

4.3. Other conflict criteria

Mitchell et al. [MREB12a] defines other conflict conditions

such as the larger disk containing the center of the smaller

disk, or considering the order in which the samples were

drawn. For these, revising the condition of when to discard

a flat quadtree square is fairly straightforward. In addition,

the mean-radius conflict condition is interesting because it

produces a (half-radius) disk packing. The main challenges

are that the definitions of corners and the sample region may

depend on the unknown replacement disk. We leave these

variations, and higher-dimensions, for future work.

5. Maximal point cloud densities

Delaunay refinement is the worst; off-centers is better; and

sifting is the best, in terms of density. Table 1 summarizes the

average point density and Delaunay edge lengths (separation

sample point relative Delaunay

type density density edge lengths

�(r) 2√
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1.95 [r,2r)
MPS(r) 0.70r−2
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ODR(r) 0.64r−2

1.66 [r,2r)
sDR(r) 0.57r−2

1.48 [r,2r)
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1.33 [r,2r)
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3
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√
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Table 1: (Average) point density and edge length ranges of
different maximal samples with uniform radius r.

distances) before and after sifting. Figure 8 shows quality

plots before and after sifting. We include the average output

of some common algorithms. We also include some extremal

distributions, in order to provide a theoretical upper bound

on how much a point cloud could be improved.

• �(r) is the points at the corners of the lattice of equilateral

triangles with side length r.

• �(r) is the square lattice with side length r, diagonal

length
√

2r.

• �(r) is the hexagonal lattice with side length r, diagonal

length 2r.

• MPS is Maximal Poisson-disk sampling.

• DR is Delaunay refinement, Delaunay circumcenter inser-

tion.

• ODR is off-center Delaunay refinement.

• sMPS, sDR, sODR are sifted MPS, DR, and ODR.

�(r) is the densest sampling respecting the minimum

separation distance, whereas �(
√

3r) is the least dense sam-

pling that still respects the maximality criteria. �(
√

2r) and

�(r) have the longest Delaunay edge lengths possible, 2r,

while still respecting the maximality criteria. (The densest

packings by dimension is a popular research topic [NS12].)

All these distributions satisfy the same inhibi-

tion/coverage criteria, but the variations are significant:

�(r) has three times as many points as �(
√

3r), and half

the maximum edge length of �(
√

2r) and �(r).

The aim of sifting is to obtain random points with density

close to that of �(
√

3r). In the case of MPS, we maintain

the inherent (and desirable) randomness of the sample. In

the case of DR and ODR, we introduce desirable random-

ness. Sifting MPS results provides two main advantages over

ODR: a larger reduction in the size of the sample as well as

a clean Fourier spectrum, discussed in Section 5.1.

© 2013 The Author(s)
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Sifting changes triangulation 
edge lengths, angles, Voronoi cell squish 
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Sifting changes triangulation 
edge lengths, angles, Voronoi cell squish 

spreads	  Voronoi	  cell	  aspect	  raBo	  shiKs	  Voronoi	  cell	  area	  distribuBon	  

!" !#$" !#%" !#&" !#'" $"

!
"#

$%
&'(

)'*
%+
+,
'

-(&(.(/'*%++'0,1%23'456('

()*""

+()*""
,-"

+,-"

.,-"

+.,-"

!"#$% !"&$% !"'$% !"$$% !"($% !")$% !"*$%

!
"#

$%
&'(

)'*
%+
+,
'

-(&(.(/'*%++'0'&12/,3'4&%5'

+,-%

.+,-%

/0
%1
23
"%

4
/0

%1
23
"%

65
6#
78
%65

78
%

95
6&
78
%95
78
%

dense	
 sparse	
 round���
cells 	


stretched���
cells 	




Sifting changes triangulation 
edge lengths, angles, Voronoi cell squish 
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Figure 8: Impact of sifting on meshing quality measures, for different input.

(a) Sifting does not introduce
an orientation bias to Delau-
nay edges: slope is uniform
random.

(b) Sifting time is linear in
the number of input points, and
roughly 4× longer than gener-
ating an MPS input.

Figure 9: Sifted edge orientations and sifting time.

oriented edges is an important property for certain meshing
and fracture simulation applications [EKL∗11].

5.2. Performance

On average, sifting an MPS point cloud requires 4 times
as long as generating the MPS sample. We sift one million
points in about 40 seconds, and the sifting process usually re-
duces the size of the sample by about 25%. Empirically our
sifting code takes linear time as demonstrated in Figure 9b.

There are also some theoretical reasons to expect linear
run-time: there are a linear number of pairs and each takes
constant time to consider. For the uniform case, the num-
ber of neighbors of a single point is a constant [EPM∗11,
EMD∗11]. This means that there are a linear number of pairs
before replacement. Empirically a linear number of pairs
(half of them) are replaced, so a linear number of pairs to-
tal are considered. Moreover, all of the local data structures
such as neighbor lists are of constant size. The flat quadtree
method is empirically linear in the number of samples pro-
duced [EMP∗12]. So the steps for a single pair take constant
expected time. This will also hold in the non-uniform case
if the sizing function (disk radii) does not vary too quickly,
but with worse constants [MREB12a]. In any case, run-time
is not worst-case linear because the location of a resample
candidate is random, and its location could be persistently
perverse, albeit with low probability.

MPS sMPS DR sDR

interior points 580 419 580 417
. . . reduction - 27% - 28%

min angle 30.6 30.5 31.7 30.6
max angle 115.5 114.7 110.7 115.5

min Vor ratio 1.30 1.23 1.26 1.24
max Vor ratio 1.994 1.998 1.982 1.998

Table 2: Mesh sifting savings and quality.

6. Applications

6.1. Stippling

We describe the process used to produce our stippling im-
ages, such as Figure 1. Given a grayscale image, we perform
edge detection.

We define a sizing function:

r(x) = rmin +(rmax − rmin)g
2(x) = rmin(1+Ag2(x))

Here g(x) ∈ [0,1] is the grayscale value of the pixel contain-
ing x, and is constant over the pixel. Here rmax ⇔ A scales
g and controls the contrast in the stippling density; we chose
A = 9. Here rmin is the length of the diagonal of a pixel. A
lower bound of rmin on the sizing function ensures that each
pixel accepts at most one sample point. This has the affect
of hiding the jumps in g(x) at pixel boundaries.

We generate an MPS using the minimum-disk conflict cri-
teria: �xi − x j� ≥ min(r(xi),r(x j)). We find a Regular trian-
gulation using r(x) for the weight of x. Finally, we sift the
point set as described in Section 4. To produce the image we
overlay the sifted points with the detected edges.

6.2. Meshing

Figure 10 shows uniform point clouds and Delaunay trian-
gulations before and after sifting. Table 2 shows the fraction
of interior points saved, and quality measures. In the table,
"Vor ratio" means the aspect ratio of a Voronoi cell: the ra-
tio of the distances from the farthest Voronoi vertex to the
sample, and the closest Voronoi edge to the sample.

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

extremes	  the	  same,	  25%	  fewer	  points	  
angles	  are	  related	  to	  Voronoi	  aspect	  raBo	  …	  



DR and ODR  
Sometimes Appear Random 

•  Many control parameters 
–  Which circle (off) center to insert next? 

We picked random-looking ���
versions for comparisons,	

Not these!	


ODR	




Sifting Retains Randomness 
Surprise!   But not identical. 

sMPS	


MPS	

MPS	


Can you tell me which is “better”?���
What’s ideal?	




What’s happening? 
• Gets less dense but never gets close to 

“converging” to a structured mesh 
– No pair can be replaced by one. 
– A triple can be replaced by two? Would we want to? 

density	


3	
 2	
 1	
1.8	
 1.3	


MPS	
 sMPS	




Sifting (introduces?) Randomness 
Surprise!   But not identical. 

DR	


sDR	


Can you tell me which is “better”?���
What’s ideal?	


DR	




Sifting (introduces?) Randomness 
Surprise!   But not identical. 

ODR	


sODR	


Can you tell me which is “better”?���
What’s ideal?	


ODR	




Original distribution doesn’t  
seem to matter much 

sDR	


sDR	
MPS	


  sDR density 1.48���
sMPS density 1.33���
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Time and Memory  
Effectively Linear 

• Sifting 4x slower than generating MPS 
but done offline… 
≈ 1.5 million / minute on CPU 



Beyond Uniform 
•  Prior was all 2d, constant radius 

–  Spatially varying radii  
•  Theory 

–  Maximum rate of change L 
•  Stippling application 

–  L exceeded, still works 

	  grayscale	  sizing	  funcBon,	  high	  contrast	   abrupt	  density	  changes	  



Beyond 2d 

• Prior was all 2d, constant disk radius 
– Higher dimension 

•  Seems straightforward to implement 
•  effectiveness unknown 
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Bonus Thought 
how I think about sampling 



Summary 

• Sifting (replace 2-for-1) points  
– Reduces the number of points 
– Retains randomness and quality 
– Poisson-disk sampling as a subroutine - resample 

• To do 
– Theory for rapidly varying sizing function, L >> 1 
– High dimensions 
– Generate a sparser distribution to begin with 


